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On the Trend to Equilibrium for Some Dissipative
Systems with Slowly Increasing a Priori Bounds

G. Toscani1 and C. Villani2
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We prove convergence to equilibrium with explicit rates for various kinetic
equations with relatively bad control of the distribution tails: in particular,
Boltzmann-type equations with (smoothed) soft potentials. We compensate the
lack of uniform-in-time estimates by the use of precise logarithmic Sobolev-type
inequalities, and the assumption that the initial datum decays rapidly at large
velocities. Our method not only gives explicit results on the times of con-
vergence, but is also able to cover situations in which compactness arguments
apparently do not apply (even mere convergence to equilibrium was an open
problem for soft potentials).

KEY WORDS: Fokker�Planck equation; Landau and Boltzmann equations
with soft potentials; logarithmic Sobolev inequalities; decay of relative entropy.

1. INTRODUCTION

We consider in this work the problem of trend to equilibrium for colli-
sional kinetic equations of the form

�f
�t

=Q( f ) (1)

where the unknown f (t, v)�0 (t�0, v # RN) is a probability density on
RN

v , and Q is a collision operator which is mass-preserving and dissipative,
in the sense that solutions of (1) make a certain entropy functional
decrease with time. We shall mainly be interested in situations where the
interaction modelled by Q is rather ``weak''��soft interaction potentials in
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the usual terminology. Before explaining in detail what we mean by this, let
us give more background on the problem.

We shall consider three collision operators:

�� the linear Fokker�Planck operator (see ref. 17)

Lf ={v } ({v f +f {W ) (2)

where W is a potential on RN satisfying

|
R N

e&W(v) dv=1

�� the nonlinear (Fokker�Planck-) Landau operator (see ref. 20 and
the references therein)

QL( f, f )={v {|RN
dv

*
a(v&v

*
)[ f

*
{f& f ({f )

*
]= (3)

with ,
*

#,(v
*

) and

a(z)=9( |z| ) 6( |z| ), 6 ij (z)=$ij&
z iz j

|z|2

�� the Boltzmann operator(8, 9)

Q( f, f )=|
R N

dv
* |

SN&1
d_ B(v&v

*
, _)( f $f $

*
& ff

*
) (4)

with f $= f (v$) and so on,

{
v$=

v+v
*

2
+

|v&v
*

|
2

_

v$
*

=
v+v

*
2

&
|v&v

*
|

2
_

(5)

and B(z, _) is a nonnegative function depending only on |z| and (z�|z|, _).
For the first operator, with the unique exception of W(v)=|v|2�2,

there is only one conservation law (the mass � f dv). The steady state is the
probability distribution e&W, and there is a variety of entropies, given by

|
R N

,( feW) e&W
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where ,(s), s�0 is a (strongly) convex function. In the following we will
consider only the Kullback relative entropy, that corresponds to the choice
,(s)=s log s

H( f | e&W)=|
R N

f (log f+W )

For the other two models, there are two additional conservation laws:
momentum and kinetic energy, i.e., � fv dv, � f |v|2�2 dv. Thus we may
assume without loss of generality that

|
R N

f (v) v dv=0, |
R N

f (v) |v|2=N (6)

and then the steady state is the centered gaussian (or Maxwellian)

M(v)=
e&|v|2�2

(2?)N�2

while the entropy is again H( f | M ). By (6), actually

H( f | M )=H( f )&H(M )

where H is Boltzmann's H-functional,

H( f )=|
RN

f log f

Contrary to the linear case, for such models this is usually the only entropy
functional, see ref. 16.

The precise study of the trend to equilibrium for all three equations
has received much attention. While the study of the linear Fokker�Planck
equation is relatively old, it is only recently that precise estimates (by this
we mean entirely explicit) have been obtained for the operators (3) and (4):
see refs. 11 and 19 respectively. These works were strongly influenced by
the pioneering contribution of Carlen and Carvalho.(6, 7)

The methods are based on establishing certain differential inequalities
of the form

D( f )�C( f ) H( f | f�): (7)

Here f� stands for the steady state, so that H( f | f�) is the entropy func-
tional, D( f ) stands for the entropy dissipation in the model on consideration,
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and C( f ) is a positive constant depending on a priori estimates of f. If one
can establish an a priori bound on C( f ), the inequality (7) entails that the
relative entropy H( f | f�) satisfies a differential inequality &H4 �CH:.
This implies immediately that it goes to 0 with an explicit rate (exponential
if :=1, algebraic if :>1).

Estimates of the form (7) have been established for all three interac-
tion operators (2), (3), (4), under some assumption of ``strong interaction.''
Namely,

�� for the Fokker�Planck operator,

D( f )�
1

2*
H( f | e&W) if D2W�* Id

this is the standard logarithmic Sobolev inequality of Bakry and Emery.(4)

�� for the Landau operator,

D( f )�C( f ) H( f | M ) if 9( |z| )�K |z|2, K>0

here C( f ) is a constant depending only on (say) H( f ), see ref. 11.

�� for the Boltzmann operator,

D( f )�C=( f ) H( f | M )1+= if B(z, _)�K

where C=( f ) depends on some moments of f (of order greater than 4+2�=,
some moments of f log f (of order greater than 2+2=), and a local lower
bound for f, for instance of the form f�Ke&A |v|2; see ref. 19.

In all three cases, there are also perturbation lemmas which allow to
cover the case when the interaction is strong for ``most'' of the phase space.
For the Fokker�Planck operator, this will mean that D2W�* Id out of a
compact set, while for the other two models this will mean that the func-
tions 9( |z| )�|z|2 or B(z, _) vanish on a set of zero measure (in the first
case, exponential decay still holds, while in the other two, only algebraic
decay is proven). In the language of kinetic theory, this means that existing
proofs typically cover the case of hard potentials.

The question we want to examine here is precisely how to get
estimates of trend to equilibrium if the interaction is weak. For our three
models, this means typically that D2W, 9( |z| )�|z| 2 or B(z, _) tend to 0 as
|z| � �, with an algebraic decay.

Let us first point out that even convergence to equilibrium (without
any explicit estimates) is not a priori clear in this situation. In order to get
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a better feeling of the difficulty, let us prove convergence for the Fokker�
Planck equation

�f
�t

={v } ({v f +f {W ) (8)

with standard PDE arguments. By conservation of mass and decrease of
the relative entropy, the family f (t, } ))t�0 is weakly compact in L1. Hence
if (tn) is any sequence of times going to infinity, we find (taking sub-
sequences if necessary) that

f (tn+}, } ) � g in w&L p([0, T ], L1(RN))

for all 1�p<�, T>0, where g(t, } ) is a probability density. By convexity
of the entropy dissipation functional (see its explicit form in Section 2), we
find �T

0 D(g(t, } )) dt=0, which implies that g is identically equal to the
steady state. We conclude that f converges weakly to the steady state as
time goes on, and in fact strongly because the family ( ft)t�1 satisfies
uniform smoothness bounds.

The utility of this method is severely limited. First, it relies on compact-
ness arguments: while these arguments actually succeed in proving con-
vergence, they do not rule out the possibility that it may be so slow as to
be physically irrelevant in the context of statistical mechanics (like Poin-
care� 's recurrence theorem��as recalled by an anonymous referee). From the
point of view of the physics, it is not very satisfying, because it does not
reflect the characteristics of the interaction, and tells us nothing about the
way the trend to equilibrium is affected by the behaviour of W. Moreover,
it is not robust, in the sense that in some situations, it may not extend to
the nonlinear case. Indeed, consider for instance the Boltzmann equation
�t f =Q( f, f ). To conclude by a similar argument we need not only know
that the weak limit g is a probability density, but also that it satisfies the
same conditions of moments (6) than f. This imposes to know a priori
tightness of the second moment of f. In the case of hard potentials, such
estimates are easy to get as a consequence of uniform boundedness of
higher-order moments; but in the case of so-called soft potentials (``weak''
interaction as presented above), obtaining uniform bounds on any moment
higher than 2 is an open problem. This difficulty is well-identified since the
work of Desvillettes.(10) Using compactness arguments, and bounds on
moments that grow linearly in time, Desvillettes was able to prove the very
weak result that for (not too) soft potentials, there is at least one sequence
of times (tn), tn � �, such that f (tn) ( M.
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In this paper, we shall improve by far this result, and actually give an
explicit estimate of strong convergence to equilibrium, provided that the
initial datum decays rapidly at infinity, and is sufficiently integrable. We
shall do so without establishing any new uniform a priori estimate. Rather,
we shall compensate the lack of uniform estimates by the use of modified
versions of the logarithmic Sobolev-type inequalities stated above. This
method will require only a priori bounds (on some weighted norms of f )
that do not increase too fast with time.

As we shall show, such bounds are often (rather) easy to obtain, and
satisfying conclusions will follow, maybe at the price of imposing rather
strong conditions on the initial datum. We shall illustrate this approach in
the three next sections, respectively on the Fokker�Planck, Landau, and
Boltzmann equations.

In short, our main results show that for soft potentials, there is trend
to equilibrium, with an algebraic rate which can be very good if the lack
of collisions is compensated by a rapid decay of the initial datum. This
result is not so natural: one could have expected that the degeneracy of soft
potentials for large relative velocities resulted in a rather bad rate. We men-
tion that numerical simulations usually show a somewhat slower decay to
equilibrium for soft potentials, than for hard potentials��yet there is no
conclusive evidence up to our knowledge.

Let us discuss now the range of application of our method. For the
Fokker�Planck equation (8), we are able to cover essentially all of the
natural range of parameters, that is

W(v)tc |v|: as |v| � �, 0<:<2 (9)

For :�0, the condition e&W # L1 is not satisfied any more, and the
problem becomes meaningless.

For the two nonlinear models given by (3) and (4), we are only able
to treat a range of interaction which corresponds formally to (9):

9( |z| )
|z|2 tc |z| #, B(z, _)tc |z| # b \ z

|z|
} _+

with

0<#+2<2 (10)

The range of exponents given by (10) was identified in ref. 20 for a different
problem, and there called moderately soft potentials. There, it was shown
that (at least from the technical point of view) #=&2 is a limit exponent
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as concerns the singularity of the cross-section B for z=0. Here, it will turn
out that this is also a limit exponent for the tail behaviour.

When #<&2, we enter the domain of very soft potentials, so far
rather mysterious. This is a particular feature of the nonlinear Boltzmann
and Landau equations, it does not occur for the Fokker�Planck equation.
As concerns the problem of the singularity at the origin, weak (renor-
malized) solutions are built in ref. 1 for &N�#�&2, and ``stronger''
weak solutions in ref. 21 for &4<#� &2. From the point of view of the
physics, the most interesting case is the Landau equation with N=3,
#=&3, which corresponds to Coulomb interaction. Here our problem is
not to overcome the singularity at the origin, but the degeneracy at infinity;
therefore we shall work with smoothed versions of the very soft potentials,
that is replace |z| # by (1+|z| )#. Even taking this into account, we are
unable to cover the case #=&3 at present, though we manage to treat any
exponent #>&3! Yet it seems that a more careful procedure may enable
to include this limit case, though with a very bad (logarithmic!) rate, as we
shall see.

2. THE FOKKER�PLANCK EQUATION WITH WEAK DRIFT

In this section, we study the trend to equilibrium for the Fokker�
Planck equation (8), where W lies in W 2, �

loc , � e&W=1, and W is
degenerately convex at infinity, in the sense

U(v)&a�W(v)�U(v)+b (11)

Here a, b are nonnegative constants and U is convex degenerate,

D2U(v)�*( |v| )=c(1+|v| ):&2, c>0, : # (0, 2) (12)

Without loss of generality we assume that U takes its unique minimum at
0, so that U satisfies a bound below proportional to |v|:.

Condition (12) holds true for a radial potential U(v)=u( |v| ) if

min _u"(r),
u$(r)

r &�cr:&2

So the ``typical'' case is W(v)=|v|:+C. In dimension 1, for such a poten-
tial, a logarithmic Sobolev inequality does not hold if :<2: see the
criterion of Bobkov and Go� tze, (5) and also the study ref. 3. Therefore, we
first establish a modified logarithmic Sobolev inequality, where we compen-
sate the lack of convexity of W by the use of moments of f.
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We use the notations

Ms( f )=|
R N

f (v)(1+|v| 2)s�2 dv,

(13)

H( f | g)=| f log
f
g

, I( f | g)=| f }{f
f

&
{g
g }

2

and we recall that I( f | g) is the relative Fisher information of f with
respect to g.

Proposition 1. Let W # W 2, �
loc satisfy the assumptions (11), (12).

Then there exists a constant C, depending only on a, b, c, :, such that for
all s�2,

H( f | e&W )�CI( f | e&W )1&$ Ms( f )$

(14)
$=$(s)=

2&:
2(2&:)+(s&2)

# (0, 1�2)

Remark. As : � 2, we recover the usual logarithmic Sobolev
inequality.

Proof. To each real number R�1 one associates the auxiliary poten-
tials W� =W� R , defined by

W� (v)=W(v)+
*(R)

2 \ |v|&
R
2+

2

1 |v|�R�2+CR

where CR is a normalization constant such that � e&W� R=1.
Clearly,

U� &a�W� R�U� +b

with

U� (v)=U(v)+
*(R)

2 \ |v|&
R
2+

2

1 |v|�R�2+CR

For |v|�R, of course D2U� R�*(R) Id, while for |v|�R, one has
|v|&R�2�|v|�2, and the Hessian of the added potential is bounded below
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by *(R)�2 Id. Therefore, U� R is (uniformly) strictly convex. This enables to
apply to W� R the Holley�Stroock perturbation lemmas(3, 13) to find

H( f | e&W� )�
ea+b

*(R)
I( f | e&W� ) (15)

Next, we shall convert (15) into an estimate for W. First, let us
estimate from below W� &W: clearly, W� &W�CR , and

eCR=| e&W(v)e&(*(R)�2)( |v|&R�2)2 1|v|�R�2 dv

=|
|v| �R�2

e&W(v) dv |
|v|�R�2

e&W(v)e&(*(R)�2)( |v|&R�2)2 dv

For R=0, 0<eC0=�R N e&W(v)e&(c�2) |v|2 dv<1, while for R=R1 large
enough (depending on a and the lower bound for U ), � |v|�R1 �2 e&W dv= 1

2 .
This implies

0< inf
R�R1

eCR=d(R1)<1

Hence, for R�R1

CR�&log
1

d(R1)
�&2 log

1
d(R1) |

|v|�R�2
e&W dv (16)

where in (16) we used the inequality 2 � |v|�R�2 e&W dv�1, R�R1 .
If R�R1 we use the lower bound

eCR�log \1&|
|v|>R�2

e&W(v) dv+�&2 |
|v|>R�2

e&W(v) dv

Thus we find (this is a crude estimate)

| f (log f+W )<| f (log f+W� )+d |
|v|>R�2

e&W(v) dv

where we denoted d=max[2, 2 log(1�d(R1))]. On the other hand, we write

| f }{f
f

+{W� }
2

�2 | f }{f
f

+{W }
2

+2 | f |{W&{W� |2
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and since |{W(v)&{W� (v)|=*(R)( |v|&R�2) 1 |v|�R�2�*(R) |v|1 |v|�R�2 , we
get

| f |{W&{W� | 2�*(R)2 |
|v|�R�2

f |v| 2 dv

�2s&2 *(R)2

Rs&2 Ms( f )

Thus,

H( f | e&W )�H( f | e&W� )+d |
|v|>R�2

e&W(v) dv

�
ea+b

*(R)
I( f | e&W� )+d |

|v|>R�2
e&W(v) dv

�2
ea+b

*(R)
I( f | e&W )+Cs(R)

*(R)
Rs&2 Ms( f )

where

Cs(R)=2s&1ea+b+d
Rs&2

*(R) |
|v|>R�2

e&W(v) dv

is a bounded function of R, for all s�2, in view of the rapid decay of e&W.
In fact

Cs(R)�2s&1ea+b+
d
c

Ms&:(w)

Optimizing in R, we find the desired result. K

The second part of our program consists in establishing a loose bound
on the moments Ms( f ), if f is a solution to the Fokker�Planck equation.

Proposition 2. Let f be a solution of (8), with initial datum f0 .
Assume that W satisfies for some :>0, c>0, C0>0,

{W(v) } v�c |v|:&C0 (17)

Then, for all s�2, and for all time t�0,

Ms( f (t, } ))�Ms( f0)+Ct,

where C is a constant depending only on :, c, C0 .
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Remark. Condition (17) is easily seen to be true if W is C2 and
satisfies D2W�c$ |v|:&2 for |v| (write the Taylor formula of order 1 for W,
with endpoints 0 and v).

Proof. Below, Cs will denote various constants depending on s, c,
C0 , :.

d
dt

Ms =| f [2(1+|v| 2)s+2&{W(v) } {(1+|v|2)s�2]

=[Ns+s(s&2)] Ms&2&s(s&2) Ms&4

&s | f [{W(v) } v] (1+|v|2) (s&2)�2

�CsMs&2&KMs&2+:+C

�CsM (s&2)�(s&2+:)
s&2+: &cMs&2+:�Cs

Here we have used Ho� lder's inequality, and the fact that the function
Cx$&cx is uniformly bounded for x�0 if $<1. This implies the conclu-
sion. K

Remark. Let us note immediately that, again by Ho� lder's
inequality, for all s<u, one has Ms�M s�u

u , which proves that in fact, if the
initial datum has rapid decay (in the sense that Ms( f0)<+� for all s>0),
then the growth of the moments is very slow:

Ms( f (t, } ))�[Ms�=( f0)+Cs, = t]=

Yet nothing prevents all moments of order s>2 to grow, say, like
logs�2(1+t).

Combining Propositions 1 and 2, we establish the

Theorem 3. Let W be a potential satisfying assumptions (11), (12),
and (17). Let f0 be a probability density such that H( f0 | e&W )<�,
Ms( f0)<� for some s>2, and let f (t, } ) be a (smooth) solution of the
Fokker�Planck equation (8) with potential W and with initial datum
f (0, } )= f0 . Then, there is a constant C depending on H( f0 | e&W ), Ms( f0)
and s, such that for all t>0,

1
2

& f (t)&e&W&2
L1�H( f (t) | e&W )�

C
t}
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with

}=
1&2$

$
=

s&2
2&:

Proof. We use the shorthands H=H( f (t) | e&W ), I=I( f (t) | e&W ),
and we assume that these quantities are positive (if not, there is nothing to
prove). It is well known that (under sufficient smoothness), the time-
derivative of H is given by I. Applying Propositions 1 and 2, we obtain the
differential inequality

&H4 =I�KH1�(1&$)(1+t)&$�(1&$)

where K is a constant, or, what is the same,

&H4 H &1�(1&$)�K(1+t)&$�(1&$)

Integrating in time from 0 to t, and then inverting the relation, follows

H(t)�
1

{H(0)&$�(1&$)+K
$

1&2$
[(1+t) (1&2$)�(1&$)&1]=

(1&$)�$ K

Remarks. 1. In the limit case were s=2, we recover

H(t)�
1

[H(0)&1+K log(1+t)]

2. One can also use the fact that if the moment of order Ms is finite
at time 0, then the growth of moments of order s$, s$<s, will be sublinear
in time. However, apparently nothing is gained in doing so. In the non-
linear case, on the contrary, it will be crucial to ``gain'' on the rate of
growth.

3. THE LANDAU EQUATION FOR MOLLIFIED SOFT
POTENTIALS

In this section and in the next, we consider more complicated non-
linear models, and we shall not obtain such sharp estimates as in the
preceding section.
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Here we are interested in the behavior of solutions to

�f
�t

=QL( f, f ) (18)

where QL( f, f ) is given by (3), and

c(1+|z| )&;�
9( |z| )

|z|2 �C(1+|z| )&;, 0<;�3 (19)

More general assumptions are possible, but the important point here
is that we deal with a cross-section which is not singular at the origin
(z=0), since our only aim here is to overcome troubles arising from the
degeneracy at infinity. We point out that taking into account a singularity
at the origin would (of course!) not worsen the entropy dissipation
estimate from below, and would not be a problem either as regards the
time behavior of moments. But the time-evolution of Sobolev norms would
require further investigation.

Our strategy is exactly the same as before: first, we establish a
modified logarithmic Sobolev-type inequality, and then slowly growing a
priori bounds on the relevant quantities.

Proposition 4. Let

DL( f )=
1
2 |

R N_RN
ff

*
9( |v&v

*
| ) }6(v&v

*
) _{f

f
&\{f

f +
*
&}

2

dv dv
*

be the entropy dissipation functional. We assume that

9( |z| )�c |z|2 (1+|z| )&;, ;>0

Then, for all s>0 and all f satisfying the moment condition (6), there is a
constant Cs( f ), depending on f only through H( f ), such that

DL( f )�Cs( f ) H( f | M )1+(;�s) F &;�s
s

Fs=Ms+2( f )+Js+2( f ),

where Ms+2 is defined by formula (13), and

Js+2( f )=|
RN

|{ - f | 2 (1+|v|2) (s+2)�2 dv
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Proof. For all R>0, we set

9� ( |z| )=9( |z| )+c(1+R)&; |z|2 1 |z|>R

Then we apply the main result of ref. 11 to 9� , and find

D� ( f )#
1
2 |

R N_R N
ff

*
9� ( |v&v

*
|) }6(v&v

*
) _{f

f
&\{f

f +
*
&}

2

dv dv
*

�K( f )(1+R)&; I( f | M ) (20)

where K( f ) depends only on H( f ).
We then estimate D� in terms of D:

D� ( f )�D( f )+
c

2(1+R) ; |
|v&v*|�R

ff
*

|v&v
*

|2 }{f
f

&\{f
f +

*
}
2

dv dv
*

�D( f )+
4c

(1+R) ; \||v&v*|�R
ff

*
|v| 2 }{f

f }
2

dv dv
*

+|
|v&v*| �R

ff
*

|v
*

|2 }{f
f }

2

dv dv
* +

�D( f )+
16c

(1+R) ; Es(R)

where

Es(R)=\||v| �R�2
f dv+\| |{ - f | 2 |v| 2 dv++|

|v|�R�2
f |v|2 |{ - f | 2 dv

+\||v|�R�2
f |v| 2 dv+\| |{ - f |2 dv+

+\| f |v|2+\||v|�R�2
|{ - f |2+

Then, with Cs denoting a constant depending on c, s, ;, N,

D� ( f )�D( f )+
Cs

R ;+s [MsJ2+Js+2+Ms+2 J0+Js]
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Next, by Ho� lder and Young inequalities,

MsJ2 =| f
*

|{ - f |2 (1+|v
*

|2)s�2 (1+|v|2) dv dv
*

�\| f
*

|{ - f |2 (1+|v
*

| 2) (s+2)�2 dv dv
*+

s�(s+2)

_\| f
*

|{ - f |2 (1+|v| 2) (s+2)�2 dv dv
*+

2�(s+2)

=(Ms+2 J0)s�(s+2) (Js+2M0)2�(s+2)�Cs(Ms+2J0+Js+2 M0)

We also dominate trivially Js by Js+2 , and remain with

D� ( f )�D( f )+
Cs

R ;+s (Ms+2J0+Js+2)

On the whole,

D( f )�
K( f )
R; _I( f | M )&

Cs

Rs (Ms+2J0+Js+2)&
We now use a simple trick: let I( f )=� |{f |2� f denote the usual Fisher

information, and write

J0=|
RN

|{ - f |2 dv= 1
4I( f )= 1

4I( f | M )+ 1
4I(M )

Thus, if CsMs+2 �Rs�1�2, one has (for a different constant Cs , in which
I(M )=N is taken into account)

D( f )�
K( f )
R ; _I( f | M )

2
&

Cs

Rs (Ms+2+Js+2)&
We conclude by choosing R in such a way Cs(Ms+2+Js+2) R&s=

I( f | M )�4, and applying the usual logarithmic Sobolev inequality. K

Corollary 4.1. Let f be a solution of Eq. (18) with a cross-section
9( |z| )�c |z|2&;, ;>0, satisfying the moment condition (6). If, for some
s>0, one has

{
Ms+2( f (t, } ))+Js+2( f (t, } ))�C(1+t)*

(21)*;
s

�1

1293Dissipative Systems with Slowly Increasing a Priori Bounds



then

H( f (t, } ) | M ) www�
t � +�

0

More precisely, H( f (t, } ) | M ) decays at least like O(t&}), }=s�;&* if
*<s�;, and O((ln t)&*) if *=s�;.

Proof. This is a consequence of Proposition 4 and the fact that
&H4 ( f | M )=DL( f ). K

The next step, obtaining estimates on Fs+2( f ), is much more delicate.
We use the notations

& f &2
H s

k = :
|:|�k

| (�:f )2 (1+|v| 2)s

& f &2
H4 s

k= :
|:|=k

| (�:f )2 (1+|v|2)s

Proposition 5. Let the cross-section 9( |z| ) satisfy assumption
(19) with 0<;<2, and let f be a smooth solution of (18), with initial
datum f0 .

v �� If Mu+2( f0)<+�, then for all s�u,

Ms+2( f )�C(1+t)s�u

v �� If Mu+2( f0)<+� and & f0&H 2
w
<+� for some w=s+2+

(N�2)+=, =>0, with w&(;�2)�u+2, then

Js+2( f )�C(1+t) +

with

+=
s
u

+
N&;+2=

2u
+

1
2

Let the cross-section 9( |z| ) satisfy assumption (19) with 2<;<3.

v �� If Mu+2( f0)<+�, then for all s�u,

Ms+2( f )�C(1+t)s�3
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v �� if Mu+2( f0)<+� and & f0&H 2
w
<+� for some w=s+2+

(N�2)+=, =>0, with w&(;�2)�u+2, then

Js+2( f )�C(1+t) +

with

+=
s
3

+
N&;+2=

6
+

1
2

Remark. A precise study of regularization properties should enable
one to dispend with the conditions & f0&H 2

:
<+�. In particular, it is clear

from our estimates that if all L2
s norms of f are finite at time 0, then all H 1

s ,
H 2

s norms of f are also finite at all positive times.

Corollary 5.1. Let ; # (0, 3), let 9 be a (smooth) cross-section
satisfying (19), and let f0 be an initial datum satisfying the moment condi-
tion (6), and which is rapidly decreasing, in the sense that for all s>0,
& f0&Ls

2 are finite (this also implies that all the moments of f0 are finite).
Then, for all =>0 there is a constant C=( f0), depending only on =, N and
a finite number of norms & f0&Ls

2 , such that the (unique) smooth solution
f to the Landau equation with cross-section 9 satisfies

H( f (t, } ) | M )�C=( f0) t&1�=

Proof of Corollary 5.1. It suffices to note that as u � +� in the
assumptions of Proposition 5, the quantity s�;&* goes to +� as
s � +�, in all cases except ;=3. K

Remark. In the case ;=N=3, our estimate enables a control of
Ms+2 with an exponent that would entail logarithmic decay to equilibrium.
But the control of Js+2 is not sharp enough.

Proof of Proposition 5. We begin with the estimate for Ms+2 . Let us
first recall from ref. 12 the basic equation for the moments Ms(t)=
Ms( f (t, } )):

d
dt

Ms(t)=|
R2N

dv dv
*

ff
*

9( |v&v
*

|)
|v&v

*
|2 (1+|v| 2) (s&2)�2

_[&2(1+|v|2)+2(1+|v
*

|2)]+(s&2) |
R2N

dv dv
*

ff
*

_
9( |v&v

*
|)

|v&v
*

|2 (1+|v| 2) (s&4)�2 [|v| 2 |v
*

| 2&(v } v
*

)2] (22)
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If 9( |z| ) satisfies Assumption (19), from this equation follows easily,
by standard Ho� lder-type arguments as in ref. 12,

d
dt

Ms� &KMs&;+CMs&2 (23)

for some positive constants C, K.
If ;<2, then the right-hand side of (23) is bounded (again by Ho� lder's

inequality), and we are left with

Ms(t)�Ms(0)+C(1+t)

Using the fact that M2 is bounded, we also have Ms+2�CM s�u
u+2 , and

combined with Mu+2�C(1+t) this proves our claim in Proposition 5.
As long as Ms+2 is concerned, the criterion (21) is fulfilled with *=1,

and any s>;.
On the other hand, if ;�2, from (23) follows only

d
dt

Ms�CMs&2

and, starting from the energy conservation, this entails

Ms+2(t)�C(1+t)s�2 if Ms+2( f0)<+�

which is not sufficient (except maybe for ;=2): note that (s�2)_(;�2)=
;�2, which has to be compared with 1.

We need a more precise bound: to this purpose, we start again from
(22). By Ho� lder's inequality,

| ff
*

9( |v&v
*

|)
|v&v

*
| 2 (1+|v|2)s�2 (1+|v

*
|2)

�_| ff
*

9( |v&v
*

|)
|v&v

*
|2 (1+|v|2)(s+2)�2&

s�(s+2)

__| ff
*

9( |v&v
*

| )
|v&v

*
|2 (1+|v

*
|2) (s+2)�2&

2�(s+2)

=| ff
*

9( |v&v
*

|)
|v&v

*
| 2 (1+|v|2) (s+2)�2 dv dv

*
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so that the sum of the first two integrals in the right-hand side of (22) is
nonpositive, and we are left with

d
dt

Ms�C | ff
*

(1+|v&v
*

|)&; (1+|v|2) (s&4)�2 [ |v|2 |v
*

|2&(v } v
*

)2]

By the elementary inequality

|v|2 |v
*

| 2&(v } v
*

)2�|v| |v
*

| |v&v
*

| 2

and using the fact that (1+|v&v
*

|)&; |v&v
*

| 2�1, we find

d
dt

Ms�CMs&3

Starting from (d�dt) M5�C, (d�dt) M8�C(1+t), and so on, then using
Ho� lder's inequality, we find the announced bound for Ms+2(t) in (1+t)s�3.

We now turn to estimating Js+2 . This is a long computation that we
divide into several steps, and that we shall not give in full detail.

Step 1: Reduction to Fisher information.
We use the notation I(g)=4 � |{ - g|2. From the general identity

| |{ - f | 2 .=| |{ - f.|2+| f - . 2 - .

(easy to obtain by expanding � |{(- f - .)|2 and doing some integrations
by parts), we deduce that for any s>0,

Js+2( f )=| |{ - f | 2 (1+|v|2)(s+2)�2

� 1
4I( f (1+|v|2)(s+2)�2)+CMs( f )

Step 2: Reduction to weighted Sobolev norms.
The diffusive structure of the Landau equation makes it much easier

to estimate the evolution of weighted Sobolev norms, than the evolution of
Fisher-like functionals. To reduce to Sobolev norms, we shall prove a
general functional inequality, which has interest on its own.

Lemma 1. For all =>0 there is a constant C= , depending only on
N and =, such that the following functional inequality holds,

I(g)�C=(&g&H4
2
(N�2)+=

+&g&H4
1
(N�2)&1+=

+&g&L2
(N�2)&2+=

)�C= &g&H2
(N�2)+=
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Proof of Lemma 1. First, by Cauchy�Schwarz,

|
R N

|{ - g|2�\|RN
|{ - g|4 (1+|v|2) (N+=)�2 dv+

1�2

\|R N

dv
(1+|v| 2) (N+=)�2+

1�2

=C= \|R N
|{ - g|4 (1+|v|2) (N+=)�2 dv+

1�2

Then, by the inequality

|{a|4 b4�8 |{(ab)|4+8a4 |{b|4

follows

|
R N

|{ - g|4 (1+|v|2) (N+=)�2 dv

�8 \| |{ - g(1+|v|2) (N+=)�4| 4 dv+| |- g { - (1+|v|2) (N+=)�4|4 dv+
�C \| |{ - g(1+|v|2) (N+=)�4| 4 dv+| g2(1+|v|2) (N&4+=)�2+

At this point, we apply the inequality

&{ - a&4
L4�C &a&2

H4 2

which is extracted from ref. 14, and recover

| |{ - g(1+|v| 2)(N+=)�4|4

�C | |D2[ g(1+|v| 2) (N+=)�4]|2

�C \| |D2g| 2 (1+|v|2) (N+=)�2+| |{g| 2 (1+|v|2) (N&2+=)�2

+| g2(1+|v|2) (N&4+=)�2+
�C(&g&2

H4
2
(N+=)�2

+&g&2
H4

1
(N&2+=)�2

+&g&2
L2

(N&4+=)�2
)

from which the conclusion follows. K
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Combining Steps 1 and 2, we obtain

Js+2( f )�C(& f &H 2
s+2+(N�2)+=

+Ms( f ))

Step 3: We show that if f is a smooth solution of (18), then

d
dt

& f &2
Hs

2�CMs&(;�2)( f )2

We first handle & f &2
Ls

2 .
We use the notations b={ } a, c={ } b, and a� =a V f (a� is a matrix!),

b� =b V f, c� =c V f, so that the Landau equation can be rewritten as

�t f ={ } (a� {f&b� f )

We recall the following bounds from ref. 12, valid as soon as f has
finite mass, energy and entropy:

K(1+|v| )&; IN�a� �C(1+|v| )2&; IN (24)

(here IN stands for the identity matrix of order N, and this is an inequality
in the sense of matrices),

|b� |�C(1+|v| )1&;, |c� |�C(1+|v| )&; (25)

Here and below, C denotes various finite constants, and K various positive
constants.

We then write

d
dt | f 2.=2 | f { } (a� {f&b� f ) .

=2 | a� {f {f .+2 | b� f {f .&2 | f (a� {f&b� f ) {.

=&2 | a� {f {f .+| f 2[&c� .&4b� } {.&a� : D2.]

where we have used 2 f {f ={( f 2), { } a� =b� , { } b=c� , and performed as
many integrations by parts as necessary.

Choosing then .=(1+|v| )s and using the bounds (24) and (25), we
obtain

d
dt | f 2(1+|v|2)s�&K | |{f | 2 (1+|v| 2)s&(;�2)+C | f 2(1+|v|2)s&(;�2)
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Writing once again |{f |2 .2�2 |{( f.)|2+2 f 2 |{.|2, this is bounded by

&K | |{g|2+C | g2

where g= f (1+|v|2) (s�2)&(;�4). We now use another interpolation lemma.

Lemma 2. For all =>0, there is a constant C= such that the follow-
ing functional inequality holds,

&g&2
L2�= &g&2

H4 1+C= &g&2
L1

Proof of Lemma 2. Let ĝ(!) denote the Fourier transform of g(v).
For all R>0 we have

|
R N

| g(v)|2 dv=|
R N

| ĝ(!)|2 d!

=|
|!|�R

| ĝ(!)|2 d!+
1

R2 |
|!|>R

|!|2 | ĝ(!)| 2 d!

�|BN(R)| &g&2
L1+

1
R2 &g&2

H4 1

where BN(R) is the ball of radius R in RN. Choosing R=1�- = we finish
the proof. K

From Lemma 2 follows

d
dt

& f &2
Ls

2�CMs&(;�2)( f )2

Next, we differentiate equation (18) with respect to vk , to find

�t �k f ={ } (a� {�k f&b� �k f )+{ } (�k a� {f&�kb� f )

Writing the equation for (d�dt) � (�k f )2 . and playing with integration by
parts and Cauchy�Schwarz inequalities, we find

d
dt

& f &2
H4 s

1 �&K &g&2
H4 2+C &g&2

H4 1+C &g&2
L2

�&K &g&2
H4 2+C &g&2

L2
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with g= f (1+|v|2) (s&;)�4. By a lemma similar to Lemma 2, we deduce

d
dt

& f &2
H4 s

1�CMs&(;�2)( f )2

The same proof, only still more tedious, shows that

d
dt

& f &2
H4 s

1�CMs&(;�2)( f )2

Step 4: We can now conclude the proof of Proposition 5. We assume
that & f0&H2

w
<+� for some w=s+2+N�2+=, =>0, such that

w&;�2�u+2. In the case ;<2, we write

d
dt

& f &2
H 2

w
�CMw&(;�2)( f )�C(1+t)2((2w&;&4)�2u)

& f &H 2
w
�C(1+t) ((2w&;&4)�2u)+(1�2)

and

Js+2( f )�C(1+t) +

+=max \s&2
u

,
s
u

+
N&;+2=

2u
+

1
2+=

s
u

+
N&;+2=

2u
+

1
2

A similar computation is done for ;�3, and yields

+=max \s&2
3

,
s
3

+
N&;+2=

6
+

1
2+=

s
3

+
N&;+2=

6
+

1
2

K

Remark. If one would like to extend this result to ;=N=3, there
are several possible strategies. One is to try to be more keen at the level of
the interpolations analogous to Lemma 2, as regards the terms involving
weighted H1 and H 2 norms (``diagonal'' interpolation). Another one is to
work directly with the functionals

I(g)=|
|{g|2

g
, K(g)=:

ij
| \�ij g

g
&

�i g �j g
g2 +

2

g

which appear naturally in a Fokker�Planck context, see ref. 18. It is likely
that an interpolation inequality like I(g)�=K(g)+C=H(g) can be proved,
maybe by some semigroup regularization argument.
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4. THE BOLTZMANN EQUATION FOR MOLLIFIED SOFT
POTENTIALS

In this section, we consider the case of the Boltzmann equation

�f
�t

=Q( f, f ) (26)

where Q is given by (4). Without loss of generality, we deal with probabil-
ity densities satisfying the moment condition (6), and the entropy func-
tional H( f | M )=H( f )&H(M ).

Our aim is to illustrate our general strategy, and not to get sharp
results. Therefore, we shall make several simplifying assumptions, in par-
ticular that the cross-section is reasonably smooth and locally bounded
below. Taking into account possible vanishing of the kernel is easy but
tedious.(7, 11) From now on, we assume that

B(z, _)=8( |z| ) b(k } _), k=
z

|z|
, 0<b

�
�b(k } _)�b� <+� (27)

K0(1+|z| )&;�8( |z| )�C0(1+|z| )&; (28)

and we denote by

D( f )=
1
4 |

R N_R N_SN&1
dv dv

*
d_ B(v&v

*
, _)( f $f $

*
& ff

*
) log

f $f $
*

ff
*

the entropy dissipation associated to the Boltzmann equation.
We follow the same strategy as before. From ref. 19 we extract the

following rough bound, obtained by keeping track of the constants. Below,
we use the notation

& f &Ls
1 log L=|

R N
f log(1+ f )(1+|v| 2)s�2

Proposition 6. Assume that f satisfies the moment condition (6)
and f�Ke&A |v|2

, and let D( f ) be the entropy dissipation associated with
the kernel B, where B(z, _)�K(1+|v| )&;. Then

D( f )�C( f ) H( f | M )1+((2+;)�s) F &(2+;)�s
s
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where C( f ) depends only on the entropy H( f ), and

Fs=\log
1
K

+A+ & f &2
L1

5+s
& f &L1

3+s log L

An easy modification of the proof yields a comparable result (only
involving higher moments of f ) if we only assume that f�Ke&A |v| p

for
some p�2.

Clearly, to control & f &L1
u log L it is sufficient to control both moments

and L2 norm of f. It is easy to obtain bounds on moments, by a method
similar to the one sketched in the preceding section, as long as we stay in
the range of moderately soft potentials. In fact, one can prove the

Proposition 7. Let f be a solution of the Boltzmann equation (26),
with a cross-section satisfying (28), ;<2. Then, all the moments of f
increase at most linearly in time, i.e.

Ms( f )�C(1+t) if Ms( f0)<+�.

We admit this proposition here, and we refer to ref. 10 for a complete
proof in the case ;�1.

Corollary 7.1. Let f be a solution of the Boltzmann equation with
a cross-section satisfying (28), ;<2, and an initial datum f0 with finite
moments of all orders (\u>0, Mu( f0)<+�). Then, for all s, =, there is a
constant C, depending only on s, = and a finite number of moments of f0 ,
such that

Ms( f )�C(1+t)=

This corollary is an immediate consequence of Proposition 7 and
Ho� lder's inequality.

Next, we turn to the control of some L p norm. Again, we are not
interested in sharp results, and we only wish to show that explicit L p

estimates can be obtained with a simple method, based on the so-called Q+

smoothness properties. We extract the following estimate from ref. 22 (or
rather the proof of the main result there).

Proposition 8. Let

Q+(g, f )=|
RN

B(v&v
*

, _) g$
*

f $
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where B satisfies assumptions (27) and (28) (in particular, 8 and b are
bounded). Assume in addition that B is smooth (C1, uniformly). Then, there
is a universal constant (depending on N, B), such that for all f # L2

1(RN),

&Q+(g, f )&H4 (N&1)�2�C &g&L1
1

(& f &L1
1
+& f &L2

1
) (29)

From now on, we drop the (constant) term & f &L1
1

and absorb it in the
constant C, since & f &L2

1
is bounded below. Thus, we shall write

&Q+(g, f )&H4 (N&1)�2�C+ & f &L2
1

(30)

On the other hand, let

Q&( f, f )=| B(v&v
*

, _) ff
*

dv
*

d_=Cf ( f V 8)

It is classical that if 8 satisfies (28), then

Q&( f, f )�K&f (1+|v|2)&;�2 (31)

where K& is a constant depending only on the mass, energy and entropy
of f (see ref. 2 for instance).

With the help of these two auxiliary estimates, we shall prove the

Proposition 9. Let f be a (strong) solution of the Boltzmann
equation with a cross-section B satisfying (30) and (31). Let p # (1, 2N ).
Then, there exist finite positive constants C, s, :, depending only on N, p
and the constants C+, K& in (30), (31), such that

d
dt

& f &Lp
p
�CMs( f ):

Corollary 9.1. If in addition the initial datum f0 has all its
moments finite, and satisfies & f0&Lp<+� for some p # (1, 2N ), then for all
=>0 there is a constant C= such that

& f &L p
p
�C=(1+t)1�=

Proof of Proposition 9. We use the notation

& f & p
Ls

p=|
RN

f p(1+|v|2) ps�2, 1�p<�, s # R
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We denote by p$ the conjugate exponent to p, i.e., p$= p�( p&1). Let
q # (1, p$) be an auxiliary exponent. We compute

1
p

d
dt | f p=| f p&1Q+( f, f )&| f p&1Q&( f, f )

�& f p&1&Lq &Q+( f, f )&Lq$&K&|
f p

(1+|v| 2) ;�2

=& f & p&1
Lq(p&1) &Q+( f, f )&Lq$&K&& f & p

&;�p (32)

Now, we estimate &Q+( f, f )&Lq$ . From (30) and Sobolev injection
there is a constant C such that

&Q+(g, f )&L2N�C &g&L1
1
& f &L2

1

On the other hand, using the boundedness of B, it is easy to prove (by
duality)

&Q+(g, f )&L1�C &g&L1 & f &L1

Since Q+ is a bilinear operator, we can interpolate between these two
bounds, and we get

&Q+( f, g)&Lq$�C &g&L1
1
& f &L1

1
(33)

with

1
r
=1&

1�(2q)
1&1�(2N )

Next, we recall that by the Stein�Weiss interpolation theorem (see also
ref. 15),

& f &Lp
k
�& f &%

Lp1
k1

& f &1&%
Lp2

k2

if

1
p

=
%

p1

+
1&%

p2

, k=%k1+(1&%) k2

In particular,

& f &Lr
1
�& f &%

L p
&;�p

& f &1&%
Ls

1 (34)
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with

%=\p$
q +

1�2
1&1�(2N )

# (0, 1), s=
1+(%;�p)

1&%

Also,

& f &Lq( p&1)�& f &+
Lp

&;�p
& f &1&+

L1
w

(35)

with

+=
1&1�q( p&1)

1&1�p
# (0, 1), w=

+;
(1&+) p

(here we used the fact that q<p$).
Combining (32), (33), (34), (35), we find after some computation

d
dt | f p�C & f &:

L1
}
(& f & p

Lp
&;�p

)1&$&K& & f & p
Lp

&;�p

with }<+� and

$=
1

q( p&1) \
N&1
2N&1+>0

The conclusion then follows from the elementary inequality

\X�0, AX 1&$&KX�CA1�$ K

In order to control Fs in Proposition 6, it only remains to estimate A
and log K&1 such that

f�Ke&A |v|2

Again, we consider a very simple situation. It is clear that our proof works
just the same with the assumption f�Ke&A |v|p.

Proposition 10. Assume that f is a solution of the Boltzmann
equation, with a cross-section B uniformly bounded, and initial datum.

f0�K0 e&A0 |v|2
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Then,

f�Ke&A |v|2

with

A(t)=A0 , log
1

K(t)
�log

1
K0

+Ct, C=|SN&1| &B&L� & f0&L1

Proof. Let M(z)=�SN&1 B(z, _) d_, and Lf =f V M. Clearly,
&M&L��|SN&1| &B&L� .

We write the solution f in Duhamel representation:

f (t, v)=f0(v) e&�t
0 Lf ({, v) d{+|

t

0
Q+( f (s, v), f (s, v)) e&�t

s Lf ({, v) d{ ds

�K0e&A0 |v|2e&t &Lf &L�

The conclusion follows from

&Lf &L��& f &L1 &M&L� K

Combining Propositions 7, 9, 10, we obtain that under suitable decay
and positivity assumptions on the initial datum, Fs in Proposition 6
satisfies a bound like, say, C(1+t)2. Since the exponent does not depend
on s, we can choose s very large, and find a bound on the evolution of the
relative entropy, H, like &H4 �K(1+t)&' H 1+= with ' and = small num-
bers. It is then easy to conclude with the following theorem (in which,
again, the assumption f0�K0e&A0 |v|2 can be replaced by f0�K0e&A0 |v|q for
some q<+�).

Theorem 11. Let f be a solution of the Boltzmann equation with
a smooth (C1, uniformly) cross-section satisfying assumption (28), ;<2,
and an initial datum f0 such that f0 has finite moments of all orders,
& f0&Lp<+� for some p>1, f0�K0e&A0 |v|2 for some finite positive con-
stants K0 , A0 . Then, for all =>0 there is a constant C=( f0), depending only
on N, p, =, & f0&Lp , K0 , A0 , B and a finite number of moments of f0 , such
that

H( f (t, } ) | M )�C= t&1�=
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